Package: CUtools (via r-universe)

March 10, 2025

Type Package
Title Clinical Utility Tools to Analyze a Predictive Model
Version 0.1.0
Description Package to analyze the clinical utility of a biomarker. It provides the clinical utility curve, clinical utility table, efficacy of a biomarker, clinical efficacy curve and tests to compare efficacy between markers.
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.1
NeedsCompilation no
Author Maria Escorihuela [aut], Luis Mariano Esteban [aut, cre], Gerardo Sanz [aut], Angel Borque [aut]
Maintainer Luis Mariano Esteban < lmeste@unizar.es>
Date/Publication 2025-02-07 18:40:02 UTC
Repository https://lmesteban.r-universe.dev
RemoteUrl https://github.com/cran/CUtools
RemoteRef HEAD
RemoteSha 9e507ccdbeffef603eec427387854c8117e88771
Contents
CUC_plot CUC_table Efficacy Efficacy_curve Efficacy_test
Index

2 CUC_plot

CUC_plot

Plot the clinical utility of a biomarker

Description

The clinical utility plot shows two magnitudes, the number of events missclassfied below a cut off point and the saved treatments. In the X axis we can see the different cut off points and in the Y axis the magnitudes above defined.

Usage

```
CUC_plot(Prob,yt)
```

Arguments

Prob A vector with the event probability values provided by the biomarker

yt A vector with the actual event values

Details

Prob must be a numeric vector with values between 0 and 1 and yt a numeric vector with dichotomic values 0/1

Value

The function returns the clinical utility curve

Author(s)

Maria Escorihuela, Luis Mariano Esteban, Gerardo Sanz, Angel Borque

```
###We generate a marker to serve as an example and plot the CUC curve Prob<-c(rnorm(1000,0.4,0.1),rnorm(1000,0.6,0.05)) yt<-rep(c(0,1),c(1000,1000)) CUC_plot(Prob,yt)
```

CUC_table 3

CUC_table	Clinical utility tools to analyze a predictive model	
000_00010	Cinical ministration to analyze a predictive model	

Description

Efficacy of a biomarker defined by the treatment saved below a cut-off point minus the missclasified events.

Usage

```
CUC_table(Th,Prob,yt)
```

Arguments

Th The vector of cutoff points used to estimate efficacy at those points.

Prob A vector with the event probability values provided by the biomarker.

yt A vector with the actual event values

Details

Prob must be a numeric vector with values between 0 and 1, yt a numeric vector with dichotomic values 0/1 and z a numeric value between 0 and 100

Value

The returned object contains the following components:

CUC_table A data frame with three columns, the threshold points, the rate of missing events and the rate of avoided treatments

Author(s)

Maria Escorihuela, Luis Mariano Esteban, Gerardo Sanz, Angel Borque

```
###We generate a marker to serve as an example  Prob <-c(rnorm(1000,0.4,0.1),rnorm(1000,0.5,0.05)) \\ yt <-rep(c(0,1),c(1000,1000)) \\ #We choose a grid of threshold points. \\ Th <-seq(1,100) \\ #Estimte the Clinical utility table \\ CUC_table(Th, Prob, yt)
```

4 Efficacy

_		٠.		
- ⊢	++	1	ca	CV

Estimate the efficacy of a biomarker

Description

The efficacy of a biomarker is defined by the treatment saved below a cut-off point minus the missclasified events.

Usage

```
Efficacy(Prob,yt,z)
```

Arguments

Prob	A vector with the event probability values provided by the biomarker
yt	A vector with the actual event values
z	The misclassification rate at which the effectiveness of the marker will be estimated.
	macu.

Details

Prob must be a numeric vector with values between 0 and 1, yt a numeric vector with dichotomic values 0/1 and z a numeric value between 0 and 100

Value

The returned object contains the Efficacy of the biomarker Prob at a specific z rate of missclasified events

Efficacy of the biomarker Prob at a specific z rate of missclasified events

Author(s)

Maria Escorihuela, Luis Mariano Esteban, Gerardo Sanz, Angel Borque

```
###We generate a marker to serve as an example  Prob <-c(rnorm(10000,0.4,0.1),rnorm(10000,0.5,0.05)) \\ yt <-rep(c(0,1),c(10000,10000)) \\ #We choose a rate of 10% for misclassified events. \\ Efficacy(Prob=Prob,yt=yt,z=10)
```

Efficacy_curve 5

		_curve
+++ 1	Cacv	CHEVA
-111	cacy.	_cui ve

Efficacy curve for a predictive model/biomarker

Description

The curve plot the efficacy of a predictive model for different missclassfication event rates

Usage

```
Efficacy_curve(Prob,yt)
```

Arguments

Prob A vector with the event probability values provided by the biomarker

yt A vector with the actual event values

Details

Prob must be a numeric vector with values between 0 and 1, yt a numeric vector with dichotomic values 0/1 and z a numeric value between 0 and 100

Value

The returned fit object of Efficacy_curve contains the plot of the Efficacy curve.

EfficacyCurve Plot of the Efficacy of the biomarker Prob at different rates of missclasified events

Author(s)

Maria Escorihuela, Luis Mariano Esteban, Gerardo Sanz, Angel Borque

```
###We generate a marker to serve as an example and plot the curve  Prob <-c(rnorm(1000,0.4,0.1),rnorm(1000,0.5,0.05)) \\ yt <-rep(c(0,1),c(1000,1000)) \\ Efficacy\_curve(Prob=Prob,yt=yt)
```

6 Efficacy_test

Efficacy_test	Test to compare efficacy of two models for a percentage of misclassified events

Description

Test to compare the efficacy of two markers for paired or unpaired cases

Usage

```
Efficacy_test( paired, Prob1,Prob2,yt1,yt2,z)
```

Arguments

paired	if sample is paired 1 else 0
Prob1	A vector with the event probability values provided by the biomarker 1
yt1	A vector with the actual event values for the biomarker 1
Prob2	A vector with the event probability values provided by the biomarker 2
yt2	A vector with the actual event values for the biomarker 2
z	The misclassification rate at which the effectiveness of the marker will be estimated.

Details

Prob1 and Prob2 must be numeric vectors with values between 0 and 1, yt1 and yt2 numeric vectors with dichotomic values 0/1 and z a numeric value between 0 and 100. in a case of a paired comparison, yt1 and yt2 must be the same vector.

Value

The returned results of a test.

Efficacy_test It gives the result of the comparison test between markers in terms of efficacy

Author(s)

Maria Escorihuela, Luis Mariano Esteban, Gerardo Sanz, Angel Borque

```
###We generate a marker to serve as an example  Prob1 <-c(rnorm(10000,0.4,0.1),rnorm(10000,0.5,0.05)) \\ Prob2 <-c(rnorm(10000,0.4,0.1),rnorm(10000,0.5,0.05)) \\ yt1 <-rep(c(0,1),c(10000,10000)) \\ yt2 <-rep(c(0,1),c(10000,10000)) \\ \#We choose a rate of 10% for misclassified events.
```

Efficacy_test 7

```
##For a paired test
Efficacy_test(paired=1,Prob1,Prob2,yt1,yt2,z=10)
##For a unpaired test
Efficacy_test(paired=0,Prob1,Prob2,yt1,yt2,z=10)
```

Index

```
\ast clinical utility
     {\tt CUC\_plot}, \textcolor{red}{2}
     CUC_table, 3
     Efficacy, 4
     Efficacy_curve, 5
     Efficacy_test, 6
* misc
     CUC_plot, 2
     CUC\_table, 3
     Efficacy, 4
     Efficacy_curve, 5
     Efficacy_test, 6
CUC_plot, 2
CUC\_table, 3
Efficacy, 4
Efficacy_curve, 5
Efficacy_test, 6
```